## Chapter Summary

## Core Vocabulary

A diagonal of a polygon is a segment that joins two nonconsecutive vertices.

A polygon in which all sides are congruent is called an equilateral polygon.

A polygon in which all angles are congruent is called an equiangular polygon.

A regular polygon is a convex polygon that is both equilateral and equiangular.

A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel.

A rhombus is a parallelogram with four congruent sides.

A rectangle is a parallelogram with four right angles.

A square is a parallelogram with four congruent sides and four right angles.

A trapezoid is a quadrilateral with exactly one pair of parallel sides.

The parallel sides of a trapezoid are the bases of a trapezoid.

## Base angles of a trapezoid are

 two consecutive angles whose common side is a base.The nonparallel sides of a trapezoid are the legs of a trapezoid.

A trapezoid with congruent legs is an isosceles trapezoid.

The midsegment of a trapezoid is the segment that connects the midpoints of its legs.

A kite is a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent.

## Games

- What Makes Me a Parallelogram?
- It's All About the Details

Chapter 7: Ruadrilaterels and Dther Polygons

- Race for Distance

This is available online in the Game Closet at www.bigideasmath.com.

## Learning Goals

Use the interior angle measures of polygons.
Use the exterior angle measures of polygons.
Use properties to find side lengths and angles of parallelograms.

Use parallelograms in the coordinate plane.
Identify and verify parallelograms
Show that a quadrilateral is a parallelogram in the coordinate plane.

Use properties of special parallelograms.
Use properties of diagonals of special parallelograms.

Use coordinate geometry to identify special types of parallelograms.

Use properties of trapezoids.
Use the Trapezoid Midsegment Theorem to find distances.

Use properties of kites.
Identify quadrilaterals.

## Standards <br> Common Core: <br> HSG-CO.C.11, HSG-SRT.B.5, HSG-MG.A.1, HSG-MG.A. 3

## Theorems

7.1 Polygon Interior Angles Theorem The sum of the measures of the interior angles of a convex $n$-gon is
$(n-2) \cdot 180^{\circ}$
7.2 Polygon Exterior Angles Theorem The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is $360^{\circ}$.

### 7.3 Parallelogram Opposite Sides

 TheoremIf a quadrilateral is a parallelogram, then its opposite sides are congruent.

### 7.4 Parallelogram Opposite Angles

 TheoremIf a quadrilateral is a parallelogram, then its opposite angles are congruent.
7.5 Parallelogram Consecutive Angles Theorem
If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

### 7.6 Parallelogram Diagonals

 TheoremIf a quadrilateral is a parallelogram, then its diagonals bisect each other.

### 7.7 Parallelogram Opposite Sides

## Converse

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

### 7.8 Parallelogram Opposite Angles

## Converse

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

### 7.9 Opposite Sides Parallel and

 Congruent TheoremIf one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.
7.10 Parallelogram Diagonals Converse If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

### 7.11 Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

### 7.12 Rhombus Opposite Angles

Theorem
A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.
7.13 Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.

### 7.14 Isosceles Trapezoid Base Angles

## Theorem

If a trapezoid is isosceles, then each pair of base angles is congruent.

### 7.15 Isosceles Trapezoid Base Angles

 ConverseIf a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

### 7.16 Isosceles Trapezoid Diagonals Theorem

A trapezoid is isosceles if and only if its diagonals are congruent.
7.17 Trapezoid Midsegment Theorem The midsegment of a trapezoid is parallel to each base, and its length is one-half the sum of the lengths of the bases.
7.18 Kite Diagonals Theorem

If a quadrilateral is a kite, then its diagonals are perpendicular.
7.19 Kite Opposite Angles Theorem If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

## C) Core Concept

## Classifications of Quadrilaterals



## Ways to Prove a Quadrilateral is a Parallelogram

| 1. Show that both pairs of opposite sides <br> are parallel. (Definition) |
| :--- | :--- |
| 2. Show that both pairs of opposite sides <br> are congruent. (Parallelogram Opposite <br> Sides Converse) |
| 3. Show that both pairs of opposite angles <br> are congruent. (Parallelogram Opposite <br> Angles Converse) |
| 4. Show that one pair of opposite sides are <br> congruent and parallel. (Opposite Sides <br> Parallel and Congruent Theorem) |
| 5. Show that the diagonals bisect each <br> other. (Parallelogram Diagonals <br> Converse) |

## What's the Point?

The STEM Videos available online show ways to use mathematics in real-life situations.

The Chapter 7: Diamonds STEM Video is available online at www.bigideasmath.com.

## Additional Review

- Using Parallelograms in the Coordinate Plane, p. 371
- Showing That a Quadrilateral Is a Parallelogram in the Coordinate Plane, p. 380
- Relationships between Special Parallelograms, p. 389
- Identifying Special Parallelograms in the Coordinate Plane, p. 392
- Showing That a Quadrilateral Is a Trapezoid in the Coordinate Plane, p. 398
- Identifying Special Quadrilaterals, p. 402

